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Abstract 

The Melville line, also known as a magnetic pulse compression (MPC) circuit, uses 

saturable core inductors and capacitors to compress the width of a pulse.  This 

substantially increases the peak power of the initially applied pulse.  Saturable core 

inductors, often referred to as magnetic switches, are favorable in pulsed power systems 

due to their high power capacity, simple design with no moving parts, and ability to 

generate short pulses. 

 

The saturable inductor exhibits a hysteresis curve behavior.  One particular problem with 

these MPC circuits is timing variances in the pulse rate of the system.  These can be 

caused by several things from poorly regulated power supplies to the saturable inductor 

not resetting to the initial state after each pulse.  This work models the unique 

characteristics and signatures of the timing variations of magnetic switches and MPC 

circuits. 

 

The hysteresis curve of the saturable inductor was created by using a nonlinear inductor 

and a nonlinear resistor in parallel as a substitute for saturable inductors.  Measured data 

provided was used in MATLAB to construct the curves for the nonlinear inductors and 

nonlinear resistors.  Once the circuit was built in MATLAB, simulations were run to 

determine the effectiveness of the pulse compression as well as the timing delays.  The 

shape of the timing delay plots was caused by the hysteresis curve not resetting to the 

initial state on the B-H plane after the first pulse is applied and it achieving a steady state 

at some smaller B-H curve after several pulses. 
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Timing Variations in a Magnetic Pulse Compression Circuit 

I. Introduction 

 

1.1 General Issue 

High power microwave (HPM) systems have the same basic components as standard 

microwave ovens.  However, an HPM system operates at a much greater power level than 

a microwave oven.  A typical microwave oven generates less than 1,500 watts of power, 

while an HPM system can generate millions of watts of power.  HPM weapons can 

degrade, deny, and destroy electronics.  HPM weapons couple power from the RF and 

microwave bands into electrical pulses in circuits.  Induced high voltages and currents 

overwhelm normal circuit operation or destroy circuits.  Unlike electronic warfare these 

pulses are not tailored to a specific coupling mechanism or effect.  Their generic nature 

makes protection from HPM much more difficult to accomplish. 

 

HPM systems are comprised of six different modules.  There is the prime power and 

conditioning, microwave source, coupling and transport, antenna, propagation medium, 

and the receiver or target [1].  This thesis will focus on the prime power and conditioning 

module of the HPM system.  The microwave sources require high-power short-pulse 

inputs to function properly; due to this constraint, a pulse forming stage is often 

necessary to compress and properly condition the driving input from the prime power 

supply. 
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The pulse compression takes the energy from a low-power long-pulse and increases its 

voltage or current while shortening the pulse duration.  This can be seen in Figure 1.  The 

pulse coming into the pulse compressor can be seen as pulse P0.  This pulse is then 

compressed by the first stage of the compressor and can be seen as pulse P1.  From Figure 

1 you can clearly see that the peak power in pulse P1 is greater than the peak power in 

pulse P0 while the duration of pulse P1 is less than duration of pulse P0 which is the 

function of the first stage of the pulse compressor.  This continues with pulse P2 being 

compressed from pulse P1 in the same manner by the second stage of the pulse 

compressor. 

 

 
Figure 1 - Illustration of Pulse Compression [1] 

 

1.2 Problem Statement 

Magnetic switches and magnetic pulse compression (MPC) circuits are being used more 

frequently in HPM devices to accomplish pulse compression.  The objective of this thesis 

is to model the unique characteristics and signatures of magnetic switches and MPC 
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circuits.  The particular parameter that will be measured is the time delay of a MPC 

circuit. 

 

1.3 Assumptions/Limitations 

This thesis will evaluate the signature of the MPC circuit only.  It will not take into 

account any fluctuations in the power supply for the pulse compressor.  There is no 

perfect power supply; the output can change depending on temperature or the load seen.  

Also there is no evaluation of how different loads will affect the signature of the MPC 

circuit.  In addition different temperatures are not taken into account.  The temperatures 

would not only affect the function of the power supply but also the properties of the 

magnetic materials in the magnetic switches. 

 

1.4 Organization of Thesis 

The background information chapter will discuss the theory behind pulse compression, 

switch technologies, the function of magnetic switches and MPC circuit.  The chapter 

will begin with a discussion on the theory behind pulse compression.  The chapter will 

then discuss different switch technologies used in pulse compression systems and 

positive properties of the magnetic switch.  Next the chapter will provide a detailed 

summary of how MPC circuits work.  This will provide the theoretical basis needed for 

the rest of the thesis. 
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The methodology chapter will document how the model in the simulation was created.  

The chapter will discuss the theory behind using a nonlinear inductor and nonlinear 

resistor in parallel to model the saturable inductor.  Then it will discuss the building of 

the model in MATLAB Simulink.  Finally will be a discussion on the exact parameters of 

the circuit used in the simulation.   

 

The analysis and results chapter will display the voltage and current pulses produced by 

the simulation.  The figures of the voltage and current will show both the input and the 

output shape to show the pulse compression.  Next will be verification of the simulation 

data to show that the results can be trusted.  This chapter will also include the plots of the 

timing delays for the simulations to establish a signature for the MPC circuit as well as a 

discussion on what produced the results. 

 

The conclusions and recommendations chapter will wrap up the discussion on the MPC 

circuit with a summary of the information presented and the findings of the simulations.  

Also discussed are any future paths for follow-on work. 
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II. Background Information 

 

2.1 Chapter Overview 

The discussion will begin with a description of pulsed power.  After that there will be a 

discussion on different types of switches that are common in pulse power systems and 

why the magnetic switch is being considered.  Then there is a more detailed description 

of MPC circuits beginning with a brief description of hysteresis curves, then describing 

the operation in detail, and finally moving to a discussion of the timing variations in the 

MPC circuit. 

 

2.2 Pulsed Power  

The discussion on pulsed power is a brief summary of the information found in [2].  

Pulsed power is used to discharge stored energy into a load in a single short pulse or short 

pulses with a controllable repetition rate.  Important pulse shape parameters such as rise 

time, decay time, and full width at half maximum (FWHM) can be seen in Figure 2.  The 

pulse rise time is defined as the time it takes the voltage to rise from 10% to 90%.  The 

decay time is defined as the time it takes the voltage to fall from 90% to 10%.  Pulse 

duration can be defined many ways, one of which is the FWHM or it could be the 

duration of 90% of the peak voltage.  Another important requirement for some 

applications is the flatness of the plateau region. 
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Figure 2 – Pulse Shape Parameters [2] 

 

The general function of the production of the high power electrical pulses is always based 

on storing energy that is charged slowly at a relatively lower charging power and then 

discharging it rapidly by activating a switch.  The discharge leads to a large power 

multiplication that can be scaled by repeating the process by adding multiple stages to the 

device.  This process can also be used to shape the pulse by providing the required rise 

time, decay time, FWHM, etc. 

 

There are two different ways to store electrical energy, either capacitively in an electric 

field or inductively in a magnetic field.  The capacitive storage is  
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Equation 1  

 
2

0

2e
Eεεω =  (1) 

where ε is the relative permittivity of the material in F/m, ε0 is the permittivity of free 

space in F/m,  E is the electric field density in V/m, and ωe is the energy density stored in 

the electric field in kJ/m3.  The inductive storage is  

Equation 2  

 
2

02m
B
µµ

ω =  (2) 

where µ is the relative permeability of the material in H/m, µ0 is the permeability of free 

space in H/m, B is the magnetic field strength in T, and ωm is the energy density stored in 

the magnetic field in MJ/m3.  Typical values of ωe are 10-80 kJ/m3 and typical values of 

ωm are 1-50 MJ/m3 so the energy density stored in a magnetic field is about two orders of 

magnitude higher than the energy density stored in an electric field.  The value of ωe is 

dictated by the breakdown strength of the material while the value of ωm is limited by the 

onset of melting at the conductor surface. 

 

The generation of pulses using capacitive storage requires one or more closing switches 

that remain open during the charging of the energy store.  The switches are then closed 

and the power amplification is achieved through current amplification.  The generation of 

pulses using inductive storage requires an opening switch that remains closed during the 

charging of the energy store.  The switch is then opened and the power amplification is 

achieved through voltage amplification.  Even though inductive storage has higher energy 
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densities, capacitive storage is used more often because it is easier to design and build 

closing switches.  

 

An advantage to pulse power is that it has a very high peak to average power ratio.  This 

allows for the ability to use threshold and nonlinear effects as well as suppress competing 

heating processes.  The short pulse duration is another advantage to pulse power, and it 

allows for the ability to exploit the time domain or to avoid competing processes. 

 

Military requirements for pulsed power based weapons and simulation and diagnostic 

tools have been the main driving force behind the development of pulsed power.  This 

includes efforts undertaken to develop high power microwave weapons.  As the 

components, such as high voltage capacitors and high power semiconductor switches, 

become more reliable and cheaper new interest has been generated in commercial and 

industrial purposes. [2] 

 

2.3 Switches 

The rise time, shape, and amplitude of the output pulse are strongly dependant on the 

properties of the switch.  Closing switches are required for capacitive storage devices so 

those will be discussed first.  Closing switches operate by a voltage breakdown across an 

element that was initially insulating.  The voltage breakdown can be initiated externally 

by a trigger pulse or it can occur automatically as a result of an overvoltage.  First gas 
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switches will be discussed, followed by semiconductor switches, and then finally 

magnetic switches.  The switch information is a summary from [2]. 

 

2.3.1 Gas Switches 

The first type of closing switch that will be discussed is gas switches.  Gas switches are 

commonly used in high power pulse generators because they are easy to use, can handle 

very large currents and charges, and they can be triggered precisely.  The method used to 

trigger the switch has a large influence on the ignition delay and its variance. 

 

The operation of the switch can be divided into four phases: trigger phase, transition 

phase, stationary phase, and recovery phase.  The trigger phase is the phase where there is 

a buildup of a trigger discharge.  The transition phase, also known as commutation, is the 

transition from high impedance to low impedance in the switch.  The stationary phase is 

when the switch is closed and has a constant conductivity.  The recovery phase is where 

the previous electric field strength is restored.  

 

2.3.1.1 Spark Gap 

The first type of gas switch to be discussed will be the gas filled spark gap which can be 

seen in Figure 3.  The spark gap has two methods of breaking down.  The breakdown can 

occur either because its breakdown voltage has been exceeded or because the breakdown 

strength has been reduced by UV radiation, plasma diffusion, or some other event inside 

the spark gap.  
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Important design parameters of a spark gap include the self breakdown voltage and the 

variance of the breakdown voltage, which determines the probability of prebreakdown.  

Also important is the range of voltages that can be reliably triggered with sufficiently low 

prebreakdown probability, known as the operation range.  Jitter, or the time variance of 

ignition, is another important variable.  The switching time, prebreakdown inductance 

and capacitance, repetition rate capability, and lifetime and cost also have to be 

considered. 

 

  

 
Figure 3 – Three Electrode Spark Gap [2] 
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2.3.1.2 Thyratron 

Thyratrons are another type of gas switch.  Thyratrons are gas filled switching devices, 

however unlike the spark gaps, their operating gas pressure is much lower.  The thyratron 

allows the passage of large currents without significant electrode erosion through the 

presence of a plasma. 

 

The thyratron uses a thermal electron source which is an advantage in that the hot 

cathode doesn’t have a potential drop.  A cold cathode requires a potential drop to 

accelerate the ions towards the cathode for secondary electron production.  These 

energetic ions lead to erosion of the cathode and a limited lifetime, however, this can be 

mitigated by using a baffle to prevent the fast electrons from reaching the anode and 

causing damage.  Current thyratrons can reach lifetimes of 105 operating hours at 

repetition rates of a few kilohertz and an average operating power at the megawatt level.  

 

2.3.1.3 Krytron 

The last type of gas switch to be discussed is the krytron.  The krytron is a low pressure 

gas discharge device with a cold cathode.  Krytrons have a short trigger delay time of 

about 30ns due to an already existing plasma created by a glow discharge between a keep 

alive electrode and the cathode.  The current and voltages rise times are below 1ns.  The 

maximum switching current is 3 kA and the maximum switching voltage is 8 kV.  Pulse 

lengths can be up to 10 µs and repetition rates of 1 kHz are achievable.  The lifetime is 

limited to approximately 106 discharges.  
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2.3.2 Semiconductor Switches 

Next semiconductor closing switches will be discussed.  The limiting factors of a 

semiconductor device are associated with the low mobility and density of charge carriers 

in the plasma and the low operating temperature.  Therefore, a large conducting region 

volume is required to conduct large currents.  

 

2.3.2.1 Thyristor 

The thyristor will be the first semiconductor switch discussed.  Thyristors can operate at 

maximum voltages of 10 kV and peak currents of 30 kA.  The maximum current rise time 

can be 20 kA/µs with a repetition rate of 10-50 Hz.  High voltage high current thyristor 

stacks are highly complex and large in size which leads to a high production cost.  These 

drawbacks have prevented their broad use in pulse power applications.  

 

2.3.2.2 Insulated Gate Bipolar Transistor 

Insulated gate bipolar transistors (IGBT) are another type of semiconductor closing 

switch.  The IGBT combines the low resistance in the on state of a bipolar transistor with 

the loss free gate control of a field effect transistor.  IGBTs have switch on times of the 

order of 10 ns, however they have lower current capabilities than thyristors.  IGBTs can 

operate at maximum voltages of 4 kV and peak currents of 3 kA.  Like thyristors they are 

complex and expensive so they have not been used widely in pulsed power applications.  
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2.3.3 Magnetic Switches 

Magnetic switches, also known as saturable inductors, are based on the saturation of a 

ferromagnetic core.  The magnetic switch is a passive switch unlike a thyratron or 

thyristor, which are both active switches.  These magnetic switches operate with small 

losses and without wear.  The ferromagnetic core of the magnetic switch begins with a 

high inductance while the capacitor is being charged.  When the core saturates the 

inductance drops abruptly and the switch closes.  A magnetic switch utilizes the complete 

range of the hysteresis curve from remanence to saturation.  The hysteresis loop should 

approximate a rectangular form with an abrupt change of inductance of several orders of 

magnitude at saturation for fast and distinct performance of the switch.  

 

The advantages of a magnetic switch are their wear free operation due to not having 

moving parts and their short recovery time.  Their disadvantages include the inability to 

produce an ideal rectangular pulse.  Due to leakage current there can be a long lasting 

foot preceding the main part of the pulse. [2] 

 

2.3.4 Switch Summary 

As can be seen below in Table 1 when the requirements for a system are on the gigawatts 

scale of power then the only two viable options are the spark gap and the magnetic 

switch.  A magnetic switch is desirable over the spark gap due to its predictable 

triggering and its longer life due to the lack of moving parts.  The spark gap has been 

thoroughly investigated and has a known output signature.  The magnetic switch has not 

been investigated as thoroughly and needs a predictable output signature. 
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Table 1 - Comparison of Switch Characteristics [2] 

Type Maximum 
Voltage (kV) 

Peak Current 
(kA) 

Repetition Rate 
(Hz) 

Lifetime (# of 
pulses) 

Spark Gap 1-6000 10-3-1000 1-10 103-107 

Thyratron 5-50 0.1-10 1000 107-108 

Krytron 8 3 <1000 107 
Thyristor <5 <5 10 108 
IGBT <4 3 100 108 
Magnetic 
Switch 

1000 100-1000 10 108-109 

 

2.4 MPC Circuits 

MPC circuits are used in applications that require high average power and high repetition 

rates.  One important issue in these applications is the stability of the output pulse of the 

system.  To understand magnetic compression systems there must first be an 

understanding of a hysteresis curve and how it functions.  Then there will be a detailed 

discussion of how the system operates.  This will be followed by detailing the timing 

variations in the system and some of the causes of those timing variations. 

 

The advantages of MPC circuits are that they are passive and require a low current first 

stage switch.  This ability to use a low current low voltage switch leads to increased 

reliability and robustness because high current high voltage switches are inherently 

unreliable.  The reliability and robustness allows for the MPC circuits to be easily 

adapted for high repetition rates for high average power applications. [3] 
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Some other disadvantages of the MPC circuit are there is no ‘off the shelf’ design of 

saturable inductors, core demagnetization is needed, the system must be designed to 

match the load to prevent reflections, and the pulse width is not adjustable. [4] 

 

2.4.1 Hysteresis 

A B-H hysteresis curve shows the relationship between the magnetic flux density, B, and 

the magnetic field intensity, H.  An example of a hysteresis curve can be seen below in 

Figure 4.  The explanation of how the hysteresis curve behaves is a summary from [5]. 

 

 
Figure 4 – Magnetic Core B-H Curve [5] 

 

To determine the hysteresis curve of a ferromagnetic material, the magnetic field 

intensity is varied while the magnetic flux density is measured.  If the ferromagnetic 

material has never been magnetized or the material has been demagnetized then it will 



 

16 

 

begin at the origin on Figure 4.  As magnetic field is increased the material will follow 

the dashed line towards the saturation point at a.  At this point almost all of the magnetic 

domains are aligned and an additional increase in the magnetizing force will produce 

very little increase in magnetic flux and saturation has been achieved. 

 

When the magnetic field intensity is reduced to zero, the curve will move from saturation 

to point b.  Point b is called the retentivity point because even though the magnetic field 

has been reduced to zero it still retains some of its magnetic flux.  This means that some 

of the magnetic domains in the material have lost their alignment but others have 

remained aligned. 

 

As the magnetizing current is reversed, the curve moves to coercivity at point c, where 

the flux has been reduced to zero.  This is the point where enough of the domains in the 

material have been flipped by the reverse magnetizing current that the net flux is zero.  

The force required to remove the residual magnetism from the material is called the 

coercive force or coercivity of the material.  

 

As the negative magnetizing current is increased, the material will move towards point d 

and become saturated in the opposite direction.   When the magnetic field intensity is 

reduced to zero, the curve will move from reverse saturation to point e.  Point e is the 

point where even though the magnetic field has been reduced to zero it still retains some 

of its magnetic flux. 
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If the magnetizing current is applied in the positive direction then the flux density will 

return to zero at point f.  Notice that the curve did not return to the origin of the graph 

because some force is required to remove the residual magnetism.  The curve will take a 

different path from point f back to the saturation point where it will complete the loop.  

 

The hysteresis curve can be used to determine a number of magnetic properties.  These 

include retentivity which is the value of the magnetic flux of a material when the 

magnetic field is removed after achieving saturation.  Also residual magnetism can be 

determined.  This is the magnetic flux density that remains in a material when the 

magnetizing current is zero.  Residual magnetism and retentivity are the same when the 

material has been magnetized to the saturation point.  However, the level of residual 

magnetism may be lower than the retentivity value when the magnetizing force did not 

reach the saturation level.  

 

In addition coercive force can be determined.  Coercive force is the amount of reverse 

magnetic field which must be applied to a magnetic material to make the magnetic flux 

return to zero.  Permeability, µ, can also be determined.  Permeability is a property of a 

material that describes the ease with which a magnetic flux is established in the 

component.   And finally reluctance can be determined.  Reluctance is the opposition that 

a ferromagnetic material shows to the establishment of a magnetic field.  Reluctance is 

analogous to the resistance in an electrical circuit. [5] 

 

The slope of a line on Figure 4 is permeability, µ, defined by  
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Equation 3  

 Bµ
H

= . (3) 

The area enclosed by the hysteresis curve is energy loss.  The area between the hysteresis 

curve and the vertical axis is recoverable stored energy defined as 

Equation 4  

 3

W BdH
m

= ∫ . [6] (4) 

 

The total flux, ϕ, through the entire cross-sectional area of the core, Ae is 

Equation 5  

 .eB Aφ =   (5) 

The total magnetic force, F, around the entire magnetic path length of the core, le is 

Equation 6  

 .eF H l=   (6) 

The permeance, P, can be calculated by  

Equation 7  

 e

e

µAP
F l
φ

= =  (7) 

and is defined as the inductance of one turn wound on the core. [6] 

 

To change the operating point in Figure 4 requires a change in energy.  Faraday’s Law 

Equation 8  

 

d E
dt N
φ
= −  (8) 

and 
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Equation 9  

 1 Edt
N

φ = ∫  (9) 

as well as Ampere’s Law 

Equation 10  

 NI Hdl= ∫  (10) 

dictate the electrical to magnetic relationship.  The flux change is governed by the 

voltage applied to the winding according to Faraday’s Law. [6] 

 

2.4.2 Operation 

The MPC circuit, also known as a Melville line, uses capacitors and saturable inductors 

to compress the width of an applied pulse and can be seen in Figure 5.  This compression 

substantially increases the peak power of the initially applied pulse while decreasing the 

elapsed time of the pulse. 

 

 
Figure 5 – Two Stage MPC Circuit 
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In a MPC circuit the capacitors are chosen to be equal in order to have complete charge 

transfer.  Since the energy in the pulse remains the same if you ignore losses, and then 

when the pulse becomes shorter the peak power must increase. [4] 

 

The MPC circuit operates by increasing the magnetic field, B, on an inductor such that it 

saturates the inductor.  The magnetic field is proportional to the time integral of the 

voltage across the inductor, also known as the volt-second product.  

 

As the voltage on C1 increases, the magnetic field in the inductor traverses from an initial 

state, represented as 1 in Figure 6, through the path 1-2-3-4.  This would be beginning at 

the saturation in the negative direction, point d in Figure 4, and moving through points e 

and f.  If the stage is properly designed, the core of the inductor will transition from 4 to 5 

close to the peak voltage on C1.  The transition from 4 to 5 signifies the saturation of the 

inductor and causes the inductance and therefore the impedance to be reduced 

significantly.  This saturation will cause C1 to discharge into C2 at a much faster rate than 

C1 was charged which will lead to a compressed pulse and an increased peak power.  

This behavior resembles the characteristics of a switch so the saturable inductor is often 

called a magnetic switch.   The MPC circuit must then have a reset circuit to apply a 

reverse current to the magnetic switch to return it from point 5 through 6 and return to 1 

so it will be passing through its retentivity point, coercivity point, and back to negative 

saturation. [3] 
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Figure 6 – Hysteresis Behavior of the Core of a Saturable Indictor [3] 

 

The pulse compression rate ratio, κ, of stage n can be defined as 

Equation 11  

 
1

n nu

n ns

L
L

τκ
τ +

= =  (11) 

where τn is the pulse rise time of stage n, τn+1 is the rise time of stage n+1, Lnu is the 

unsaturated inductance of stage n, and Lns is the saturated inductance of stage n. [4] 

 

The unsaturated inductance, Lu, of a ring shaped solenoid is 

Equation 12  

 
2

0 ru
u

µ µ ANL
l

=  (12) 

where µ0 is the permeability of free space, µru is the unsaturated relative permeability, A 

is the magnetic material cross section area, N is the number of conductor turns, and l is 

the magnetic field path length.  The saturated inductance, Ls, of the same ring shaped 

solenoid is 
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Equation 13  

 
2

0 rs
s

µ µ ANL
l

=  (13) 

where µrs is the saturated relative permeability.  This provides a ratio of unsaturated 

inductance versus saturated inductance of  

Equation 14  

 u ru

s rs

L µ
L µ

=  (14) 

Typical values for µru are on the order of thousands to tens of thousands and typical 

values of µrs are approximately one.  This will lead to a ratio of Lu to Ls on the order of 

thousands to tens of thousands.  The switching of the saturable inductor uses the large 

ratio of the inductances to perform its function. [7] 

 

The relationship between the voltage-time product and the flux density is 

Equation 15  

 ( )
0

1 sT

mV t dt A B
N

= ∆∫  (15) 

where Ts is the time to saturation, V(t) is the applied voltage, ΔB is the change in 

magnetic flux density, N is the number of conductor turns, and Am is the magnetic 

material cross section area. [7] 

 

2.4.3 Timing Variations 

The jitter and timing transients that can manifest themselves in MPC circuits can be a 

problem.  Precise analysis and design of the MPC circuit can be difficult because of the 

nonlinear characteristics of the magnetic switches.  There are several sources for these 
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timing issues.  One cause of the variations is that the volt-second product presented to 

each core must be regulated.  Irregularities in the volt-second product can be caused by 

imperfections in the power supply providing the input pulses.  The second cause of the 

variations is energy reflections due to mismatches between the stages of the system.  The 

third cause is that the inductor doesn’t return to point 1 on the B-H plane before each 

pulse is applied.  The reset circuit connected to the inductors to reset the state of the 

inductor to point 1 is a low voltage power supply that is isolated from the pulse 

undergoing compression. [3] 

 

The isolation between the reset circuit and the Melville line is never absolute.  The 

complex interactions in the residual energy in the two systems will overcome the reset 

circuit’s ability to reset the inductor to point 1 and will lead to a more complex path to be 

taken on the B-H hysteresis curve.  These interactions will lead to timing variations on 

the pulse arrival at the output due to the variations in the starting point of the B-H curve 

of the inductor. [3] 

 

Minimizing shot-to-shot and burst-to-burst pulse amplitude and timing variations is a key 

consideration for MPC circuits.  As can be seen in Figure 7, scientists at Lawrence 

Livermore National Laboratories (LLNL) have done work to measure the timing 

variations in a MPC circuit.  These variations are measured data particular to the system 

they have at LLNL.  As can be seen there are variations in the pattern of the timing 

signature based on the pulse repetition frequency (PRF).  The top part of Figure 7 is for a 

pulse repetition frequency (PRF) of 1 kHz.  The pulse timing has some random jitter in it 
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but it also increases slightly before it starts a decreasing trend.  All of the pulses were 

within 30 ns for arrival time.  The bottom part of Figure 7 is for a PRF of 5 kHz.  The 

pulse timing for the 5 kHz has almost no random jitter and is on a steadily decreasing 

timing pattern.  The arrival time starts at around 220 ns and decreases steadily till it is at 

approximately 20ns after 50 pulses. [8] 
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Figure 7 – Experimental Output Timing Signature of MPC Circuit used by LLNL for (top) 1 kHz 

PRF and (bottom) 5 kHz PRF [8] 

 

2.5 Summary 

As can be seen there has been previous work done on MPC circuits.  There are even 

multiple examples of simulations being run to better understand the operations of the 

circuits.  Only one of the sources has specifically looked at the repetition response, 

however, the information is for one specific system and is strictly experimentally 

collected data. 
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The papers from the scientists at Lawrence Livermore National Laboratories clearly 

illustrate that the magnetic switching in MPC circuits can introduce a timing variation.  

This variation is the focus of the simulation efforts that were done to determine the output 

timing signature of the MPC circuit. 
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III. Methodology 

 

3.1 Chapter Overview 

This chapter will begin with a discussion of the how the model was constructed.  The 

discussion begins with a summary of [9] upon which the model is based.  The chapter 

then goes into a discussion of how both the nonlinear inductor and the nonlinear resistor 

were created in Simulink.  Finally discussed is how the circuit was laid out in Simulink 

and what the parameters were of that circuit. 

 

3.2 Constructing the Model 

MATLAB Simulink was the program used to model the circuit.  Using the information 

provided in [9].  The mathematical model to represent a hysteresis curve is constructed 

using two monotonically increasing functions.  Using this method the hysteresis curve 

can be simulated and will also exhibit important hysteresis properties such as minor 

loops.  The mathematical model is able to be represented by a circuit model consisting of 

a nonlinear inductor and a nonlinear resistor in parallel.  The data shown in Figure 8 and 

Figure 9 from [9] was then used as the functions for the nonlinear inductor and nonlinear 

resistor to create the hysteresis curve shown in Figure 10. 
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Figure 8 – Nonlinear Inductor Current versus Flux Curve [9] 

 

 
Figure 9 – Nonlinear Resistor Voltage versus Current Curve [9] 
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Figure 10 – Hysteresis Curve Corresponding to the Nonlinear Inductor and Nonlinear Resistor 

Provided in Figure 8 and Figure 9 [9] 

 

Figure 8 shows the behavior of the nonlinear inductor as a function of the current and 

flux.  As can be seen no current flows through the inductor until a threshold flux has been 

reached.  Once this flux threshold has been reached the current then flows through almost 

unimpeded. 

 

3.2.1 Nonlinear Inductor 

The schematic for the nonlinear inductor subsystem can be seen in Figure 11.  To 

construct the nonlinear inductor the first thing to do was recreate the inductor 

characteristics shown in Figure 8 for the i-λ curve.  This was done by using a lookup table 

in Simulink and entering in the correct values for the table. 
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Figure 11 – Nonlinear Inductor Schematic in Simulink 

 

To calculate the values the first thing that must be done is to calculate the flux at the 

breakpoint.  The breakpoint is the point in Figure 8 where the slope of the line changes 

and signifies the transition from the unsaturated region to the saturated region.  The 

breakpoint was estimated to occur at 0.05 mA.  Since the circuit being used was using 

120 V input for 0.01 s the flux can be calculated to be 1.2 V·s using   

Equation 16  

 VdtΨ = ∫  (16) 

where Ψ is the flux in the inductor and V is the voltage across the inductor.  The 1.2 V·s 

can then be used in  

Equation 17  

 i
L
ψ

=  (17) 

to determine the unsaturated inductance, L.  Using the current at the breakpoint, 0.05 mA 

was used for i in Equation 17 and using the flux calculated before as 1.2 V·s this 
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produces an unsaturated inductance, L, of 24000 H.  This unsaturated inductance is the 

slope of the line created by the flux and the current in the unsaturated region.  To produce 

a saturated inductance that is close to zero, the breakpoint values on the lookup table had 

to be close to one to provide a slope of the saturated region that was close to zero and 

therefore approaching horizontal. 

 

Once the lookup table was constructed, a subsystem was created in Simulink to provide 

the functionality of the nonlinear inductor.  To determine the flux that is input to the 

nonlinear inductor the first thing that must be done is a voltage measurement.  This is 

implemented in Simulink by using a Voltage Measurement block.  The Voltage 

Measurement block determines the voltage across the nonlinear inductor subsystem.  This 

voltage must then be integrated to obtain the flux.  This is done in Simulink with an 

Integrator block.  The Integrator block calculates the result from Equation 16 to 

determine the flux. 

 

This flux was then used with the lookup table previously constructed.  This was done by 

finding the flux value on the lookup table and determining the current that corresponded 

to that value.  The value of the current from the table was then used as an input to a 

Controlled Current Source block in Simulink to output the correct current from the 

nonlinear inductor subsystem. 

 

A mask was then created for the nonlinear inductor subsystem so that the important 

values of saturation flux, unsaturated inductance and the saturation characteristics could 
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be quickly changed to see how it affected the system.  The mask can be seen in Figure 12 

and the code used can be seen in Appendix A. 

 

 
Figure 12 - Nonlinear Inductor Mask in Simulink 

 

The saturation characteristics of the curve determine the slope of the saturated part of the 

inductor.  This is done by changing the last two numbers in the list.  The first numbers are 

always [0 0; 1 1] but the last two can be changed to adjust the slope.  So for instance if 

you want the saturated inductance to be 25% of the unsaturated inductance you would 

make the saturation characteristics [0 0; 1 1; 2 1.25].  If you wanted the saturated 

inductance to be 0.01% of the unsaturated inductance then the saturation characteristics 

would be [0 0; 1 1; 2 1.0001].  The percentage is just the slope of the last part of the line 

so the rise over run of the last numbers, i.e. 
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Equation 18  

 1.0001 1 0.0001 0.01%
2 1

−
= =

−
 (18) 

 

3.2.2 Nonlinear Resistor 

The schematic for the nonlinear resistor can be seen in Figure 13.  The first step in 

creating the nonlinear resistor was determining a function that could represent the v-i 

curve seen in Figure 9.  The atan function was determined to provide the best fit to the 

provided data.  The function used was 

Equation 19  

 ( / )i A atan x B=   (19) 

to create the desired curve.  To determine the best shape of the function a MATLAB file 

was created where two variables, A and B, were varied to change the shape of the atan 

curve.  The code of this file can be seen in Appendix B. 

 

Once the curve had been recreated then a nonlinear resistor subsystem was created in 

SIMULINK.  The first step in the subsystem calculates the voltage across the nonlinear 

resistor.  This is then passed through a transfer function with a fast time constant of 0.01 

µs to break the algebraic loop without changing the nonlinear characteristics.  It is then 

sent through a Function block with properties of the atan function previously calculated.  

This block finds the voltage value on its x-axis and outputs the value of the 

corresponding current on the y-axis.  The value provided is then used as an input in the 

Controlled Current Source block and output from the nonlinear resistor subsystem. 
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Figure 13 - Nonlinear Resistor Schematic in Simulink 

 

A mask was then created for the nonlinear resistor so that the important values could be 

quickly changed.  The mask can be seen in Figure 14.  This mask allows for the two 

variables, A and B, used in the atan function to be changed quickly and easily. 

 

 
Figure 14 - Nonlinear Resistor Mask in Simulink 
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3.3 Circuit Parameters 

These two devices were then used to model a saturable inductor and put into the circuit 

shown in Figure 15.  The circuit is a basic layout of a MPC circuit. 

 

The Pulse Generator block is producing a square pulse that is 0.01 s in duration every 1s 

starting at time 0.5 s with a magnitude of 120.  This pulse generator then feeds into a 

Controlled Voltage Source block that converts this input signal into a voltage.  This 

voltage is then fed into a capacitor C1 that is 2 µF.  Once the flux across the nonlinear 

inductor is high enough it saturates at which point it allows the current to flow through to 

the next capacitor C2.  This discharge into C2 happens in a shorter amount of time than C1 

was charged which provides the pulse compression.  The value of C2 is also 2 µF.  C2 

then charges and once the flux is high enough across the second nonlinear inductor then it 

saturates and allows the current to flow into the load.  The value of the load is 100 Ω. 

 

To measure the currents in the system two Current Measurement blocks were added.  The 

first Current Measurement block was put in the loop that the first saturable inductor is in.  

The second Current Measurement block was put in the loop that the second saturable 

inductor and the load are in.  These two Current Measurement blocks were then attached 

to a Scope block so that the measurements could be seen and recorded.   
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Figure 15 – Circuit Layout Used in Simulink for MPC Circuit Simulations 
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To measure the voltages in the system three Voltage Measurement blocks were added.  

The first Voltage Measurement block was put across C1.  The second Voltage 

Measurement block was put across C2.  The third Voltage Measurement block was put 

across C3.  These three Voltage Measurement blocks were then attached to a Scope block 

so that the measurements could be seen and recorded.   

 

3.4 Summary 

This chapter began with an analysis of the [9] to determine a way to model the saturable 

inductors needed for the MPC circuit.  The values used in the paper were then used to 

construct a nonlinear inductor and a nonlinear resistor to properly model the hysteresis 

behavior of the saturable inductor.  The nonlinear inductor and nonlinear resistor were 

then put in parallel in a MPC circuit to model the timing signature.  This timing signature 

as well as a validation of the circuit will be discussed in the next chapter. 
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IV. Analysis and Results 

 

4.1 Chapter Overview 

First the output pulse forms of the simulations are presented.  To trust these results it 

must first be validated, therefore the next part of this chapter will be a discussion on how 

the validation was done.  Finally there will be the presentation of the signature of the 

MPC circuit and an explanation on why the simulation produced the results seen. 

 

4.2 Simulation Results 

The results of the first simulation can be seen below.  This simulation was performed 

with the parameters outlined above for the circuit shown in Figure 15.  Figure 16 shows 

the voltage pulse data for the entire 10 s simulation run.  The top plot is the input pulses 

into the MPC circuit every 1 s.  The middle plot is the voltage across C2 of the MPC 

circuit and the bottom plot is of the voltage across the load. 

 

To provide more detail Figure 17 shows a zoomed in view of the first pulse at 0.5 s.  On 

Figure 17 the input voltage of 120 V for 0.01 s can be seen in the top plot.  In the middle 

plot it can be seen the point that L1 switches closed just after 0.508 s and the voltage 

across C2.  The bottom plot is of the voltage across the load of the MPC circuit and it can 

be seen when the second switch, L2, closes after 0.512 s and allows the discharge across 

the load. 
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Figure 16 - Pulse Shape of the Voltage for a 10 s Simulation for (top) the Input Voltage, (middle) the 

Voltage across C2, and (bottom) the Voltage across the Load 

 

 
Figure 17 - Pulse Shape of the Voltage for a single Pulse for (top) the Input Voltage, (middle) the 

Voltage across C2, and (bottom) the Voltage across the Load 

 

Next the form of the current pulses was evaluated.  Figure 18 shows the current for the 

entire 10 s simulation run.  The top plot is of the current through L1 and the bottom plot is 

of the current through L2. 
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Figure 18 – Pulse for the Current for a 10 s Simulation for (top) the Current through L1 and 

(bottom) the Current through L2 

 

Figure 19 shows the form of a single pulse.  The top plot shows the current through L1 in 

the MPC circuit.  The bottom plot shows the current through L2 in the MPC circuit.  

From a comparison of the two currents it can be seen that the circuit is providing pulse 

compression.  The current in the bottom plot is shorter in duration and also has a higher 

peak current. 

 

 
Figure 19 – Pulse Shape of the Current for a single Pulse for (top) the Current through L1 and 

(bottom) the Current through L2 
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The delay seen in Figure 19 between the current in L1 and the current in the load is 

caused by the time it takes L2 to switch.  There is a time where the voltage on the 

capacitor C2 is constant which means that no more current is flowing onto the capacitor.  

This relationship is defined by  

 QC
V

=  (20) 

where C is the capacitance, Q is the charge, and V is the voltage.  Since  

 dQi
dt

=  (21) 

if the voltage and capacitance aren’t changing then no current can be flowing because the 

charge, Q, can’t change either.   As can be seen from Figure 17 the duration of the 

plateau of the maximum voltage on C2 is the same as the delay between the two currents 

in Figure 19. 

 

4.3 Validation of Circuit 

To confirm the results of the circuit it was compared to theoretical data.  Of particular 

importance was to make sure the circuit was behaving as it should in compressing the 

incoming signal.  The theoretical circuit proposed by Melville can be seen in Figure 20.  

This can be compared to the representation of the circuit used in the modeling in the 

previous chapter which is provided in Figure 5.  When comparing Melville’s circuit to 

the one used in the modeling the current in P2 of Melville’s circuit is equivalent to the 

current in L1 of the circuit used for the modeling.  In addition the current in P3 of 

Melville’s circuit is equivalent to the current in L2 of the circuit used for the modeling. 
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Figure 20 – MPC Circuit Proposed by Melville [10] 

 

The next step to verify the results is to compare the currents of both Melville’s circuit and 

the circuit used in the model.  Melville’s current can be seen in Figure 21 and the models 

current can be seen in Figure 19.  As can be seen by comparing Figure 21 and Figure 19 

not only is it compressing the current and increasing its peak current but it even has the 

same shape.  This confirms that the circuit modeled in the previous chapter is performing 

in the desired manner. 

 

 
Figure 21 – Current Measurements of Melville’s Circuit [10] 
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4.4 Timing Variation Signatures 

After confirming the circuit model was producing the desired results the next step was to 

determine the pulse timing signature and the reason for the particular signature.  The first 

step was to take the circuit laid out in the chapter above and run it for 10 s.  This provided 

10 pulses that could be measured.  To calculate the pulse timing a MATLAB function 

was created.  This function can be seen in Appendix C.  What the function does is 

calculate the time between the initial pulse coming into the MPC circuit at C1 and the 

pulse leaving the MPC circuit at the load.  The data shown in Figure 22 is for a pulse 

every second that lasts for 0.01s.  Since H is directly proportional to the flux, the farther 

the hysteresis curve must travel on the x axis the more flux that is required to close the 

magnetic switch which means it will take longer to switch provided the same flux. 

 

 
Figure 22 – Pulse Delay between the Input Pulse and the Output Pulse for a Square Pulse 0.01 s in 

duration every 1 s 
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As can be seen in Figure 22, the first pulse delay is 0.0097 s.  Since the reset circuit was 

never able to function properly in the model, this would correspond to movement from 

the origin on Figure 4 to point a where the inductor would saturate.  The core would then 

move towards point b in Figure 4 after the field is removed.  Since there is no functioning 

reset circuit, it will never move past point b.  Since the distance from where the inductor 

is currently back to a is shorter than from the origin to a the next pulse is faster.  For the 

second pulse the curve doesn’t get a chance to fall all the way back to the previous spot 

so the next pulse is even faster.  After the second pulse, the hysteresis curve finds steady 

state in a minor loop and the delay time levels off at 0.0084 s. 

 

The next step was to speed up the pulses entering the circuit.  The same 0.01 s pulse was 

input into the MPC circuit however the time between the pulses was decreased to 0.1 s.  

This should lead to smaller time delays due to a shorter path on the hysteresis curve.  The 

time delay curve of this can be seen in Figure 23. 

 

As can be seen in Figure 23 the pulse time delay begins at the same 0.0097 s and has the 

same decaying shape that the previous simulation did but the time delay falls very rapidly 

and to a much shorter time.  This validates the hypothesis that the time is so short that the 

inductor core is unable to reset to its initial starting point and is therefore creating a 

shorter path on the hysteresis curve. 

 

To verify this, the same circuit was provided the same 0.01 s long pulse but this time 

every 10 s.  If the theory is correct then it should lead to a flatter curve where the core is 
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able to reset to the initial starting point after every pulse so the path taken on the 

hysteresis curve will be the same.  The results of this simulation can be seen in Figure 24. 

 

 
Figure 23 - Pulse Delay between the Input Pulse and the Output Pulse for a Square Pulse 0.01 s in 

duration every 0.1 s 

 

 

 
Figure 24 - Pulse Delay between the Input Pulse and the Output Pulse for a Square Pulse 0.01 s in 

duration every 10 s 
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As Figure 24 shows the pulse delay time begins at the same 0.0097 s but this time it 

never decays.  This confirms that the saturable core is able to reset to the same point on 

the hysteresis curve after every pulse. 

 

4.5 Summary 

The first step was to verify that the circuit model was working as intended.  To do this the 

simulation results were compared to the theoretical values proposed by Melville.  After 

the results were verified the timing delay signatures of the model was examined.  It 

started with examining the initial values of the circuit and then adjusting the times 

between pulses to collect data on the hysteresis curve behavior.  The next chapter will be 

used to summarize the results of the research as well as suggest some future areas of 

work. 
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V.  Conclusions and Recommendations 

 

5.1 Chapter Overview 

This chapter will bring about the conclusions of the research conducted earlier in the 

paper.  Also discussed will be any recommendations for future work that can be done 

with this project. 

 

5.2 Conclusions of Research 

This thesis started with a brief introduction to HPM and the desire to model the signature 

of the MPC circuit.  Before the modeling could be done an understanding of the 

underlying concepts first had to be developed.  It began with a development of what 

pulsed power is and described some of the types of switches that could be used to create 

the pulsed power.  Then magnetic switches were described in more detail.  To achieve 

that a description of a hysteresis curve had to be provided so the behavior of the switch 

could be understood.  Next an explanation of how the MPC circuit itself actually 

functions was given.  This was followed by a discussion on the timing instabilities of the 

MPC circuit. 

 

The next step was to build a model to conduct the simulations.  This was done based on a 

paper by Chua and Stromsmoe.  The paper detailed a way to simulate the properties of a 

hysteresis curve of a saturable inductor by putting a nonlinear inductor and a nonlinear 

resistor in parallel.  For this to be done a nonlinear resistor and nonlinear inductor 
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subsystem had to be built in Simulink.  These subsystems were then put into a crcuit 

design and the simulations were run. 

 

After the simulations were run the first step was to verify that the data being provided 

was the information desired and that it was accurate.  To do this the output of the 

simulation was compared to data provided by the original creator of the circuit, W.S. 

Melville.  After the data was compared and shown to verify the outputs then the pulse 

time delay signature could be evaluated. 

 

The first step was to run the simulation exactly as it was initially designed with a 0.01 s 

pulse every 1 s.  This produced a pattern very similar to a decaying exponential.  This 

signified that the hysteresis curve wasn’t able to reset to the same point after every pulse.  

Once a path had been achieved that it was able to reset to the same point every time then 

the curve leveled off. 

 

After that the pulse speed of the simulation was sped up so that it was providing the same 

0.01 s pulse but this time it was doing it every 0.1 s.  This led to a decaying exponential 

shaped curve but it bottomed out at a much lower time delay.  This indicated that the 

alternate path on the hysteresis curve created was much smaller than the initial path. 

 

Finally the pulse speed of the simulation was slowed down so that it was providing a 0.01 

s long pulse every 10 s.  This led to a nearly flat time delay curve.  This means that the 



 

49 

 

core of the inductor was able to nearly reset to its initial starting point after every pulse 

thus maintaining the initial hysteresis shape. 

 

5.3 Recommendations for Future Research 

The next major part of this project would be to design and implement a functioning reset 

circuit for the saturable inductors.  This reset circuit would allow for the initial state of 

the hysteresis curve to be set at point 1 in Figure 6.  It would also allow for the hysteresis 

curve to be reset past point b in Figure 4.  If not given enough time to reset all the way to 

the starting point at 1 even with a reset circuit the time delay will still have a decaying 

shape.  However if given enough time between pulses and a large enough current in the 

reset circuit, potentially a path on the hysteresis curve larger than the initial could be 

created which would lead to a growing exponential shape. 

 

Another area of investigation is how temperature changes could affect the function of the 

circuit.  The temperature would not only have an effect on the properties of the magnetic 

material in the inductor core but it could also potentially have an effect on the power 

supply used to provide an input to the MPC circuit. 

 

The last suggested area of exploration would be an evaluation of the changes in the 

signature if the power supply or the load weren’t modeled as perfectly consistent and 

never changing. 
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Appendix A – MATLAB Code to Create Nonlinear Inductor Mask 

% Define base current and Flux for pu system 
I_base = phi/L; 
Phi_base = phi;  
  
% Check first two points of the saturation characteristic 
if ~all(all(sat(1:2,:)==[0 0; 1 1])), h=errordlg('The first two points 
of the characteristic must be [0 0; 1 1]','Error'); 
    uiwait(h); 
end  
  
% Complete negative part of saturation characteristic 
[npoints,ncol]=size(sat); 
sat1=[sat ; -sat(2:npoints,:)]; 
sat1=sort(sat1);  
  
% Current vector (A)  and flux vector (V.s) 
Current_vect=sat1(:,1)*I_base; 
Flux_vect=sat1(:,2)*Phi_base; 
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Appendix B – MATLAB Code to Create Nonlinear Resistor Function 

A=5.3/pi*1e-4; 
B=2.6; 
C=3; 
x=-6:0.11:6; 
y=A*atan((x/B)); 
plot(x,y) 
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Appendix C – MATLAB Code to Calculate Pulse Delay 

% Stephen Hartzell 
% AFIT - RA 
% 12-29-2011 
% Last Revised: 12-29-2011 
%% EXPLANATION 
%  This script requires a structure VoltageData output from simulink. 
This script assumes there are three voltage signals saved in this 
structure. 
%% Declare new variables 
t =  VoltageData.time; 
X1 = VoltageData.signals(1).values; 
X2 = VoltageData.signals(2).values; 
X3 = VoltageData.signals(3).values; 
  
% Create logical array to find where the signal reaches and falls to 1% 
of the maximum value 
X1_truth = X1 > .01*max(X1); 
if X1_truth(1) 
    error('This method will not work if the signal starts in the on') 
end 
X2_truth = X2 > .01*max(X2); 
X3_truth = X3 > .01*max(X3); 
  
% Find points where each pulse of the signal starts and stops. Each 
pointis one less than it should be. This is why there is a plus 1 when 
calculating X1_start and X1_end, etc. 
dX1 = X1_truth(2:end) - X1_truth(1:end-1); 
dX2 = X2_truth(2:end) - X2_truth(1:end-1); 
dX3 = X3_truth(2:end) - X3_truth(1:end-1); 
  
% Find the points at which the pulses start and stop 
X1_start = find(dX1 == 1)+1; 
X2_start = find(dX2 == 1)+1; 
X3_start = find(dX3 == 1)+1; 
X1_end = find(dX1 == -1)+1; 
X2_end = find(dX2 == -1)+1; 
X3_end = find(dX3 == -1)+1; 
if length(X1_start) ~= length(X3_start) 
    error('There must be as many input pulses as output pulses') 
end 
  
% Calculate the delay between the input and output 
Delay = zeros(length(X1_start),1); 
for ii = 1:length(X1_start) 
    Delay(ii) = t(X3_start(ii)) - t(X1_start(ii)); 
end 
  
figure(1) 
stem(Delay) 
clear X1_truth X2_truth X3_truth ii 
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